Asymptotic Dimension of Relatively Hyperbolic Groups

نویسنده

  • D. OSIN
چکیده

Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups {H1, . . . ,Hm}. We prove that if each of the subgroups H1, . . . ,Hm has finite asymptotic dimension, then asymptotic dimension of G is also finite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Relatively Hyperbolic Groups in Products of Trees

We show that a relatively hyperbolic group quasiisometrically embeds in a product of finitely many trees if the peripheral subgroups do, and we provide an estimate on the minimal number of trees needed. Applying our result to the case of 3manifolds, we show that fundamental groups of closed 3-manifolds have linearly controlled asymptotic dimension at most 8. To complement this result, we observ...

متن کامل

Asymptotic Dimension and Small-cancellation for Hierarchically Hyperbolic Spaces and Groups

We prove that all hierarchically hyperbolic groups have nite asymptotic dimension. One application of this result is to obtain the sharpest known bound on the asymptotic dimension of the mapping class group of a nite type surface: improving the bound from exponential to at most quadratic in the complexity of the surface. We also apply the main result to various other hierarchically hyperbolic g...

متن کامل

Dimensions of Products of Hyperbolic Spaces

Estimates on asymptotic dimension are given for products of general hyperbolic spaces, with applications to hyperbolic groups. Examples are presented where strict inequality occurs in the product theorem for the asymptotic dimension in the class of hyperbolic groups and in the product theorem for the hyperbolic dimension. It is proved that R is dimensionally full for the asymptotic dimension in...

متن کامل

Bounded geometry in relatively hyperbolic groups

If a group is relatively hyperbolic, the parabolic subgroups are virtually nilpotent if and only if there exists a hyperbolic space with bounded geometry on which it acts geometrically finitely. This provides, via the embedding theorem of M. Bonk and O. Schramm, a very short proof of the finiteness of asymptotic dimension for such groups (which is known to imply Novikov conjectures).

متن کامل

Rigidity and Relative Hyperbolicity of Real Hyperbolic Hyperplane Complements

For n > 3 we study spaces obtained from finite volume complete real hyperbolic n-manifolds by removing a compact totally geodesic submanifold of codimension two. We prove that their fundamental groups are relative hyperbolic, co-Hopf, biautomatic, residually hyperbolic, not Kähler, not isomorphic to lattices in virtually connected real Lie groups, have no nontrivial subgroups with property (T),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004